		STUDY MODULE D	ESCRIPTION FOR	М	
	f the module/subject puter Graphics a	and Visualization	Code 1010514341010519520		
Field of	study		Profile of study (general academic, prac	otion)	Year /Semester
Com	puting		practical	ciicai)	2/4
Elective path/specialty			Subject offered in: English		Course (compulsory, elective) elective
Cycle of	f study:		Form of study (full-time,part-	time)	1
	First-cyc	le studies	part-time		
No. of h	ours				No. of credits
Lectur	e: 12 Classes	s: - Laboratory: 12	Project/seminars:	-	2
Status o	of the course in the study	program (Basic, major, other)	(university-wide, from and	other field)	
		major		from	field
Educati	on areas and fields of sci	ence and art			ECTS distribution (number and %)
techr	nical sciences				2 100%
	Technical scie	ences			2 100%
Resp	onsible for subje	ect / lecturer:			
ema tel. Inst	nž. Witold Andrzejewsl ail: Witold.Andrzejewsł (0-61) 665-2965 ytut Informatyki 965 Poznań, ul. Piotro	ki@cs.put.poznan.pl			
Prere	quisites in term	s of knowledge, skills an	d social competenc	ies:	
1	Knowledge	Student starting this module sho geometry and computer system		e regardi	ng programming languages,
2	Skills	He/she should have the skills to information.	acquire knowledge from th	ne desig	nated sources of
3	Social competencies	Student should understand the r team.	need to extend his/her com	npetence	s and be ready to work in a
Assu	mptions and obj	ectives of the course:			
1. Tea	ch students the basic of	concepts and definitions related to	computer graphics.		
		matical basics of 3D graphics.			
		ds of 3D object animation.			
		ng models and hidden surface rem	oval methods.		
		ays of 3d model representations. data visualization methods.			
		ter graphics application programm	ing skills by introducing p	opular co	mouter graphics libraries
7. DCV		mes and reference to the			
Knov	/ledge:				<u> </u>
	-	oretical knowledge regarding com	puter graphics - [K1st W4	41	
2. knov	vs the important direct	tions and most important developr graphics - [K1st_W5]			nce and related research
3. knov	•	ethods, techniques and tools emp	loyed to solve complex en	gineerin	g tasks in the area of
Skills		··]			
		nt data visualization methods at di	ferent stages of an it proje	ect imple	mentation - [K1st U2]
		iter graphics algorithms and imple			
		ion methods processed in multiple			
	al competencies:				

1. understands that in the filed of computer graphics, knowledge and skills can quickly become obsolete - [K1st_K1]

2. understands the importance of knowledge in solving engineering problems - [K1st_K2]

3. is able to think in an entrepreneurial manner - [K1st_K3]

Assessment methods of study outcomes

Formative assessment:

a) lectures:

- based on answers to questions related to subjects covered during previous lectures,

b) laboratory classes:

- evaluation of correctness of implementation of assigned tasks (following provided lab. instructions),

Total assessment:

a) verification of assumed learning objectives related to lectures:

- evaluation of acquired knowledge on the basis of the written exam (a test, ~30 questions, total points achievable 30, 16 points needed to pass).

b) verification of assumed learning objectives related to laboratory classes:

- based on the project implemented by a team of students, each students? grade is evaluated based on the quality of his/hers part as well as answering to several project related questions.

Additional elements cover:

- discussing more general and related aspects of the class topic,

- ability to utilize knowledge covered in previous lectures

- showing how to improve the instructions and teaching materials.

- pointing out flaws in teaching materials and helping lecturer to improve them

Course description

Lectures cover the following topics

Lecture 1. Basic concepts and definitions in the field of computer graphics. Introduction of: image buffering, hidden surface removal, basic texturing algorithms, basic texture types, several classes of special effects.

Lecture 2. : Mathematical basics of 3D graphics. Short repetition of computational geometry. Introcution of homogenous coordinate system, geometrical transformations and their matrix representation, quaternions and their relation to 3D rotation, typical vertex processing pipeline in 3D application, view and projection matrices (perspective and orthogonal projection), geometrical transformations of normal vectors.

Lecture 3. Animation techniques. Sprite animation. Vector graphics animation (per vertex animation, skeletal animation, inverse kinematics). Introduction to shading algorithms. Introduction of light abstraction types (point, directional, cone and surface lights).

Lecture 4. Shading models. Introduction of basic radiometry terms. Description of BRDF nad Schlicks BSF functions. Derivation of basic shading models: Lambertian diffuse model, Phong and Phong-Blinn model. Introduction of complex shading models such as: Cook-Torrance model.

Lecture 5. Introduction of raytracing rendering algorithm and Whitted shading model. Description of differences between local and global shading models.

Lecture 6. Data visualization. Introduction to data visualization process. Discussion of exemplary visualization methods for many different data types. Description of 3d object representation methods.

During laboratories (6x2 hours) the students implement simple exercises in OpenGL:

Laboratory 1: Introduction to OpenGL API. Discussion about the basic program structure and GLFW framework. Introduction to several basic topics related to drawing and animating of 3D models.

Laboratory 2: OpenGL exercises related to moving, rotating and animation 3D objects on a scene. Students gain the skills to correctly construct geometrical transformation matrices. Moreover introduction of methods allowing to draw arbitrary trimeshes. Finally, intrucduction of Vertex Buffer Objects and their applications in acceleration of drawing process.

Laboratory 3: Texturing of objects in OpenGL. Advanced shading of objects. Discussion of pros and cons of shading model used in OpenGL. Shading model configuration.

Laboratory 4: Introduction to GLSL language. Simple exercises based on implementation of simple geometry transforming shaders and simple shading models.

Laboratory 5: Implementation of per-vertex shading models in GLSL, including Lambert and Phong models. Implementation of per-pixel shading models in GLSL including Phong and cell shading.

Laboratory 6: Texturing in GLSL. Multitexturing, Simple environment mapping.

Learning methods:

1. Lectures: multimedia presentation, presentation illustrated with examples presented on black board, solving tasks, multimedia showcase.

2. Labs: solving tasks, practical exercises, discussion, teamwork, multimedia showcase.

Basic bibliography:

1. Fundamental algorithms for computer graphics / ed. by Rae A. Earnshaw.

2. Mathematical Elements for Computer Graphics / Rogers David F., Adams J.Alan.

3. Computer graphics techniques : theory and practice / David F. Rogers, Rae A. Earnshaw (eds.).

Additional bibliography:

1. OpenGL Superbible, fifth edition. Richard S. Wright, Jr., Nicholas Haemel, Graham Sellers, Benjamin Lipchak, Addison-Weslay Pearson Education.

2. Introduction to Computer Graphics, J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Phillips, Addison Wesley Longman

Result of average student's workload

Time (working hours)
12
7
2 12
12
5
-

Source of workload	hours	ECTS
Total workload	50	2
Contact hours	26	1
Practical activities	31	1